Kinematics

.

 Equations of Motion: For a particle moving under constant acceleration, the displacement, velocity, acceleration and time are related by the 3 equations of motion. Kinematic Graphs: Since displacement, velocity and acceleration are related through the time derivative, the velocity-time and acceleration-time graphs can be obtained by finding the gradients of the displacement-time and velocity-time graphs respectively. Likewise, the displacement-time and velocity-time and acceleration-time graphs can be obtained by finding the graphs respectively. 		$v = u + at$ $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ $v = \frac{ds}{dt}, a = \frac{dv}{dt}$ $s = \int u dt E$ $s = \int u dt E$	Area S slope zero v=0 positive a>0 S slope zero a=0 a<0 a<0 a<0 a<0 a<0 b slope zero a>0 b slope zero a>0 b slope zero a>0 a<0 c b slope zero a<0 c c c c c c c c
Projectile Motion: Particles launched at an angle oblique to the earth's gravitational field will follow a curved path, known as projectile motion. Without air resistance, the particle experiences zero acceleration in the horizontal direction and acceleration of $g = 9.81 \text{ms}^{-2}$ in the vertical direction. The motion can be analysed by decomposing all vector components vertically and horizontally		$\frac{x \text{-direction } (\rightarrow^+)}{a_x = 0, v_x = u_x}$ $s_x = u_x t$ $\frac{y \text{-direction } (\uparrow^+)}{a_y = g \text{ (constant)}}$ $v_y = u_y - gt$ $s_y = u_y t - \frac{1}{2}gt^2$	$U_{x} = U \cos \Theta$ $U_{y} = U \sin \Theta - 9t_{1}$ $U_{z} = U \cos \Theta$ $U_{y} = U \sin \Theta$ $U_{x} = U \cos \Theta$ $U_{y} = U \sin \Theta - 9t_{3}$ $U_{z} = U \cos \Theta$ $U_{y} = U \sin \Theta - 9t_{3}$
Common Calculations for Projectile N Max Height h_{max} $v_y^2 = u_y^2 + 2as_y$ Time for Ma $v_y^2 = u_y^2 + 2as_y$ $s_y = u_y t - \frac{1}{2}gt^2$ $0 = u_y^2 - 2gs_y$ $0 = u_y t_{max} - \frac{1}{2}gt^2$ $s_y = u_y^2 / 2g$ $0 = u_y t_{max} - \frac{1}{2}gt^2$ $h_{max} = (u \sin \theta)^2 / 2g$ $t_{max} = 2u_y / g = \frac{1}{2}gt^2$	Iotions x Range S $x E_2 FER$ $2u \sin \theta / g$	$v_{y}^{2} = u_{y}^{2} - 2gs_{y}$ ARAGPLE $s_{x} = u_{x}t = u\cos\theta t$ $s_{x} = u\cos\theta(2u\sin\theta/g)$ $s_{x} = u^{2}\sin2\theta/g$ $R_{max} = u^{2}/g$	hmax R
Air Resistance: In real life situation, particles moving through air will experience a resistive force F_D , called air resistance, which acts in the opposite direction of motion.		$F_D \propto v$ at low speeds $F_D \propto v^2$ at high speeds	Smaller Air resistance
Effect of Air Resistance on Free Falls: Particle acceleration decreases until zero, when resistive forces equal weight. As acceleration goes to zero, it will then reach terminal velocity.	Effect of Air I Motions ✓ Particle v maximum he is in the same which increase deceleration ✓ Timetak shorter than t t ₂ as the mag greater than acceleration. ✓ Particle v range as air ro slow down th which results travelled.	Resistance on Projectile will reach a lower ight h_2 as air resistance e direction as gravity, ses the magnitude of onits varue Lise an otrivelup Lise ime taken to travel down nitude of deceleration is he magnitude of will travel a shorter esistance always acts to be horizontal velocity, in a smaller distance	ti t_2 t