Surds and Indices

1.0 Introduction to Surds

It is an *nth* root of a positive integer, which cannot be expressed in exact form as a rational number. For

example $\sqrt{4} = 2$ and $\sqrt{\frac{4}{9}} = \frac{2}{3}$ are rational number

but $\sqrt{6}$ is a surd. In this chapter we will be dealing mainly with surds involving square root.

1.1 Algebraic Manipulation

In general, we have the following rules:

 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ $\sqrt{a} \times \sqrt{a} = a$ $m\sqrt{a} \pm n\sqrt{a} = (m \pm n)\sqrt{a}$

Example 1

Which of the following is a surd ?

(a) $\sqrt{144}$	(b) $\sqrt{12}$	$(c)\sqrt{\frac{1}{16}}$	$(d)\sqrt{\frac{2}{16}}$	(e) $\sqrt[3]{64}$
------------------	-----------------	--------------------------	--------------------------	--------------------

1.2 Rationalising Surds

The process of eliminating the surds in the denominator of a fraction is known as rationalizing.

For example,
$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
.

Use the following results for rationalization:

Product of conjugate pairs = rational number
i.e.
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$$

Example 3

SAMPLE

REFERENCE ONLY

Rationalise the denominator of the following fractions.

(a)
$$\frac{3}{\sqrt{5}}$$
 (b) $\frac{3}{1-\sqrt{5}}$ (c) $\frac{\sqrt{5}-2\sqrt{3}}{2\sqrt{5}-\sqrt{3}}$

Example 4 Simplify the following. (a) $\frac{1}{\sqrt{2}} - \frac{2}{\sqrt{8}} + \frac{\sqrt{128}}{3}$ (b) $(\frac{1}{\sqrt{2}-1} - \sqrt{3}+2) \times 2\sqrt{12}$

(c)
$$\left(\frac{\sqrt{2}}{3-\sqrt{6}}\right)$$

Surds \sqrt{k} is said to be in its most simplified form if k does not have any factor that is a perfect square (other than 1). How about $\sqrt[3]{J}$?

Example 2

Simplify each of the following (a) $6\sqrt{5} - 7\sqrt{125}$ (b) $\sqrt{8} + \sqrt{12}$ (c) $\sqrt{5} \times \sqrt{3} + \sqrt{60}$ (d) $\sqrt{28} + \sqrt{112} - \sqrt{252}$ (e) $\sqrt{48} \times 8\sqrt{3} \div \sqrt{243}$ (f) $(2 - \sqrt{3})(2 + \sqrt{3})$ (g) $(5\sqrt{3} - 3)^2$ (h) $(3\sqrt{2} - 2)^3$

Example 5
Simplify the following.
$$1 - 2 = \sqrt{128}$$

(a)
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{8}} + \frac{1}{3}$$

(b) $(\frac{1}{\sqrt{2}-1} - \sqrt{3}+2) \times 2\sqrt{12}$
(c) $(\frac{\sqrt{2}}{3-\sqrt{6}})^2$

